Can spherical deconvolution provide more information than fiber orientations? Hindrance modulated orientational anisotropy, a true-tract specific index to characterize white matter diffusion.
نویسندگان
چکیده
Diffusion tensor imaging (DTI) methods are widely used to reconstruct white matter trajectories and to quantify tissue changes using the average diffusion properties of each brain voxel. Spherical deconvolution (SD) methods have been developed to overcome the limitations of the diffusion tensor model in resolving crossing fibers and to improve tractography reconstructions. However, the use of SD methods to obtain quantitative indices of white matter integrity has not been extensively explored. In this study, we show that the hindrance modulated orientational anisotropy (HMOA) index, defined as the absolute amplitude of each lobe of the fiber orientation distribution, can be used as a compact measure to characterize the diffusion properties along each fiber orientation in white matter regions with complex organization. We demonstrate that the HMOA is highly sensitive to changes in fiber diffusivity (e.g., myelination processes or axonal loss) and to differences in the microstructural organization of white matter like axonal diameter and fiber dispersion. Using simulations to describe diffusivity changes observed in normal brain development and disorders, we observed that the HMOA is able to identify white matter changes that are not detectable with conventional DTI indices. We also show that the HMOA index can be used as an effective threshold for in vivo data to improve tractography reconstructions and to better map white matter complexity inside the brain. In conclusion, the HMOA represents a true tract-specific and sensitive index and provides a compact characterization of white matter diffusion properties with potential for widespread application in normal and clinical populations.
منابع مشابه
Estimating the number of fiber orientations in diffusion MRI voxels: a constrained spherical deconvolution study
Introduction: It has long been recognized that the Gaussian diffusion tensor model is inappropriate for voxels with complex fiber architecture [1, 2]. Many groups have tried to classify voxels in terms of their diffusion complexity. The earliest studies distinguished between voxels with isotropic, single-fiber anisotropic, and multifiber anisotropic complexity and have reported clustered and sy...
متن کاملAltered hemispheric lateralization of white matter pathways in developmental dyslexia: Evidence from spherical deconvolution tractography.
This study examines the structural integrity and the hemispheric lateralization patterns of four major association fiber pathways in a group of French dyslexic children and age-matched controls (from 9 to 14 years), using high angular diffusion imaging combined with spherical deconvolution tractography. Compared with age-matched controls, dyslexic children show increased hindrance-modulated ori...
متن کاملIsotropic non-white matter partial volume effects in constrained spherical deconvolution
Diffusion-weighted (DW) magnetic resonance imaging (MRI) is a non-invasive imaging method, which can be used to investigate neural tracts in the white matter (WM) of the brain. Significant partial volume effects (PVEs) are present in the DW signal due to relatively large voxel sizes. These PVEs can be caused by both non-WM tissue, such as gray matter (GM) and cerebrospinal fluid (CSF), and by m...
متن کاملBeyond fractional anisotropy: Extraction of bundle-specific structural metrics from crossing fiber models
Diffusion MRI (dMRI) measurements are used for inferring the microstructural properties of white matter and to reconstruct fiber pathways. Very often voxels contain complex fiber configurations comprising multiple bundles, rendering the simple diffusion tensor model unsuitable. Multi-compartment models deliver a convenient parameterization of the underlying complex fiber architecture, but pose ...
متن کاملComparing a diffusion tensor and non-tensor approach to white matter fiber tractography in chronic stroke
Diffusion tensor imaging (DTI)-based tractography has been used to demonstrate functionally relevant differences in white matter pathway status after stroke. However, it is now known that the tensor model is insensitive to the complex fiber architectures found in the vast majority of voxels in the human brain. The inability to resolve intra-voxel fiber orientations may have important implicatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human brain mapping
دوره 34 10 شماره
صفحات -
تاریخ انتشار 2013